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Thermodynamics of anisotropic fluids using isotropic potentials 

Sorin Basteat and Francis H. Ree” 
Lawrence Liver-more National Laboratory, 
7OOD East Avenue, Livermore, CA 94550 

We study the effectiveness and limitations of the median potential recipe for mixtures such as 
NZ + 0s and Ns + COz, that are important in detonation applications. Conversely, we treat effec- 
tive spherical potentials extracted from Hugoniot experiments (e.g., Ns and 02) as median potentials 
and invert them to extract atom-atom potentials. The resulting non-spherical potentials compare 
remarkably well with the atom - atom potentials used in studies of solid state properties. Finally, 
we propose a method to improve the median potential for stronger anisotropic fluids such as CO2 
and its mixtures. 
[anisotropic fluids, mixtures, effective spherical potentials, median, atom-atom potentials] 

The equilibrium properties of anisotropic molecular 
fluids can be in principle calculated in a statistical me- 
chanics framework, but the theory is generally too cum- 
bersome for many practical applications. Fortunately, at 
high densities and temperatures the anisotropy can be 
‘averaged-out’ by means of a density and temperature 
independent spherical potential ( the ‘median’) that pro- 
duces reliable thermodynamic data [1,2]. 

Lebowitz and Percus [2] pointed out some time ago 
that the success of this approximation can perhaps be 
understood in terms of a simple theory that treats the 
asphericity as a perturbation. The idea can be summa- 
rized for the more general case of a binary mixture X + Y 
as follows: If pb(r, Ri, Qz) is the anisotropic potential 
between molecules of type a and b (a and b run from 
1 to 2, where 1 stands for X and 2 for Y) and $gb(r) 
the corresponding effective spherical potential, we write 
$:b(~,Ri,Rz) = $gb(r) + Ay[qPb, &jb], with 1 > y 2 0 
and As[pb, +Eb] = 0, A,[@‘, dtb] = @b - $gb. Then, if 
we expand the Helmholtz free energy as 

F. = Fo + y(dF/dy)lo + . . . (1) 

the condition that the first order correction is zero, 
(dFl%)lo = 0, ’ P lm oses a restriction on the potentials 
4gb(r). If the concentrations of the X and Y molecules 
are z and y (Z + y = l), this translates into 

where gzb are the pair correlation functions for the spher- 
icalized system. The above condition can be enforced in- 
dependent of density, temperature and concentrations if 
we require J(dA~b/dy)l&~dR2 = 0 for all a’s and b’s. 
The form of the effective spherical potentials, for both 
like-pair and unlike-pair interactions, depends of course 
crucially on our choice for Aqb (in fact only aAqb/ay) lo), 
which unfortunately is left undefined by the perturbation 
expansion. 

The proposal of Shaw and Johnson [l], which turns 
out to be the so-called median potential [2], is very suc- 
cessful in predicting the thermodynamics of simple flu- 

ids such as N2 and CO2 at reasonably high pressures 
and temperatures [3,4]. The median is defined by using 
dA;b/dy)]s = sgn(pb - $gb), and appears to be the best 
choice for hard nonspherical potentials [5]. This may ex- 
plain its success for fluids at high densities, where the 
hard core contribution is known to be dominant. 
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FIG. 1. Test of median potentials for an equimolar Nz +Os 
mixture. 

Anisotropic fluids such as Nz , 02, CO2 appear as deto- 
nation products at high densities and temperatures, gen- 
erally in mixed form [6]. Therefore, we test the median 
potential prescription for equimolar mixtures of Ns + 02 
and N2 + COz, by comparing the results of MD simu- 
lations with rigid rotor atom-atom potentials and with 
sphericalized potentials in an extended range of densities 
and temperatures. For the rigid rotor calculations we use 
atom-atom exp - 6 potentials, 

V(T) = t/(a - 6){6exp[a(l- T/T*)] - a(r*/r)“} (2) 

The N - N and 0 - 0 parameters were extracted from 
Hugoniot data and for N - 0 we used the Lorentz- 
Berthelot rule. 

The Nz and 02 molecules are moderately anisotropic, 
with bond lengths I& = l.O98A, 10~ = 1.207& and 
r&/lN, ? 0.29, r(;,llo2 2: 0.35. We show in Fig. 1 the 
results of constant density simulations for the Ns + 02 
mixture. The agreement between the rigid rotor and the 
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median potential results is very good in the range of den- 
sities and temperatures studied. This is probably not 
entirely unexpected as Nz is a good candidate for spher- 
icalization [3], while 0s is only slightly more anisotropic, 
as shown by its r* fl ratio . 

To study the Nz + COs mixture we used a simpli- 
fied model for the CO2 molecule [4], that only takes 
into account the oxygens as centers of force. While this 
model may not be an accurate predictor of experimental 
data, it does reproduce the basic anisotropy of the COs. 
The length of the CO2 molecule is ZcoZ = 2.32& and 
r*/lcoZ E 0.70, which makes it much more anisotropic 
than either Nz or 0s. The agreement between the rigid 
rotor and the sphericalized potential results is limited to 
smaller particle densities than in the case of Nz + OZ. 
(Note that a density of 2.3g/cm3 for Nz + CO2 yields 
approximately the same particle density as 1.9g/cm3 in 
the case of Ns + 0s.) 
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FIG. 2. Test of median potentials .for an equimolar 
NZ + CO2 mixture. 

Perhaps the greatest advantage of the median poten- 
tial over other effective spherical potentials [7] is the fact 
that it is independent of density and temperature. The 
success of the median recipe justifies in fact the analysis 
and interpretation of experimental shock-wave data on 
anisotropic fluids in terms of isotropic potentials. These 
potentials, generally obtained by fitting Hugoniot data 
[8-111, prove to be reliable in predicting thermodynamic 
properties at high pressures and temperatures [6]. 

Given the success of the median, in particular for 
molecules like Ns and 02, we therefore believe that such 
potentials can be treated like medians and inverted to 
yield atom-atom potentials. We carried out this task 
for N2 and 02, by assuming an exp - 6 form for the 
N - N and 0 - 0 interactions. This simple functional 
form turns out to be sufficient for extracting with very 
good accuracy atom-atom potentials from the Ns - Nz 
and 0s - 02 intermolecular interactions. We show in Fig. 
2 our 0 - 0 potential, together with an 0 - 0 potential 
used to model solid state data of molecular 02 at high 
pressures [12]. The agreement is very good, showing that 

unique sets of atom-atom potentials should perhaps be 
sufficient to describe the thermodynamic properties of 
simple anisotropic molecular systems in both fluid and 
solid states. 
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FIG. 3. 0 - 0 atom-atom potential based on shock and 

solid phase data; repulsive region (top) and attractive region 
(bottom). 

The lower accuracy of the median for Nz + CO:! mix- 
tures, in particular at higher temperatures, can be largely 
traced back to its performance in the case of pure CO2 
- see Fig. 3. Nevertheless, given the general success of 
the median prescription, we would like to improve it in a 
systematic way. Unfortunately, the basis for the median 
construction is rather heuristic [2,5], and seems to defy a 
full,explanation [13,14]. 

To make progress, we turn to the observation that the 
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median minimizes the sum of absolute deviations [7,15] 
s dRr s dRs]4(r, fir, as) - 40(r)]. We interpret this as 
an effective way of constructing an isotropic interaction 
between two isolated molecules. 
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FIG. 4. Non-spherical versus sphericalized potentials for 

COz; comparison between median and corrected median (see 
text). 

However, at high densities, in particular for hard bod- 
ies, the presence of a third molecule will restrict the con- 
figurations available to the first two molecules. We take 
this into account in an heuristic way by using a relatively 
small number of positions for the third molecule; details 
will be reported elsewhere [16]. The new potential, that 
we call corrected median, yields results as shown in Fig. 
3. We believe that they are promising, as they improve 
the pressure predictions, in particular at high tempera- 
tures. Further refinements and the testing of the proce- 
dure for mixtures are underway [16]. 

Work performed under the auspices of the U. S. De- 
partment of Energy by the Lawrence Livermore National 
Laboratory under Contract No. W-7405-ENG-48. 
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